Ôriginal Russian Text Copyright © 2004 by Mazitova, Shornikov, Klyuchareva, Kantor.

SHORT COMMUNICATIONS

1,3-Migration of Hydrogen in 1,3-Dioxane Carbocation

E.G. Mazitova, D.V. Shornikov, E.V. Klyuchareva, and E.A. Kantor

Ufa State Petrotechnical University, Ufa, 450062 Russia

Received February 26, 2003

At temperature higher than 250°C in the presence of catalysts 1,3-dioxanes are converted into β -alkoxy-aldehydes. It is assumed that the key stage of the process is 1,5-migration of hydrogen within a catalytic complex formed by coordination of both oxygen atoms of the 1,3-dioxane to the catalytic site [1].

On the other hand an information exists on possible occurrence of 1,3-hydride shift in alkoxycarbocations I arising at dissolution of 1,3-dioxanes in acid media [2]. It is presumable that the β -alkoxyaldehyde forms as a result of successive 1,3 and 1,2 intramolecular hydrogen migrations.

The key stage of this scheme is 1,3-migration of a hydrogen atom that can be described as follows:

$$H_2C=^{\frac{t}{2}}$$
=OCH₂CH₂CH₂OH \longrightarrow $H_2C=^{\frac{t}{2}}$ =CCH₂CH₂OH

I A

 \longrightarrow $H_2CO=^{\frac{t}{2}}$ =CH₂CH₂CH₂OH

Conformations of ion **I** were calculated within the framework of AM1 and Hartree–Fock methods in the valence-split basis with polarization *d*-orbitals (6-31G**).

The narrow range of heats of formation (less than 2 kcal mol⁻¹) indicates that all conformations may exist in solution. In all conformations hydrogen atom at C^2 and migrating hydrogen $H^{I\theta}$ at C^4 are located in the plane $C^2O^3C^4$ ($\varphi=0.5\pm0.5$ and $179.5\pm0.5^\circ$ respectively).

It should be noted that despite sterical hindrances the minimum of heat of formation corresponds to the eclipsed conformation of the carbocation **I** (ΔH_f 93 kcal mol⁻¹) where the C⁶ is located anticlinal with respect to O³ atom (ϕ 116°).

In all conformations considered atom $H^{1\theta}$ located in axial position at the C^4 atom is involved into the migration process. This hydrogen, the single one among substituent atoms, is oriented in the plane $C^2O^3C^4$, and the distance $H^{1\theta}$ – C^2 is 2.5 Å, a lot shorter than the distances between the C^2 atom and other hydrogens.

The HOMO is built up of antibonding combination of p-orbitals belonging to O^I and C^6 atoms and s-orbitals of the hydrogen attached to C^6 , and LUMO is combined from antibonding p-orbutals of C^2 and O^3 atoms, where the contribution into LUMO from AO of C^2 atom amounts to 50% (see figure). This structure underlies the 1,3-migration of hydrogen.

In transition state **A** the orientation of hydrogen atoms at C^2 atom changes as compared to that in ion **I** since simultaneously with the rearrangement a methylene group rotation occurs accompanied with the bond C-O cleavage. Note that in ion **A** atoms $C^2O^3C^4$, and H^{10} are located in the same plane, and the bond angles at the atoms O^3 , C^2 , and C^4 are altered. The bond angle $C^2O^3C^4$ decreased by over 30° confirms that **A** moiety constitutes a four-membered transition state.

The electron density redistribution in transition state **A** concerns only atoms taking part in building up the fourmembered state. The charges on atoms C^2 and C^4 get leveled, and the negative charge on O^3 increases. The structure of frontier molecular orbitals in ion **A** suffers significant changes compared with that of ion **I** (see figure). The HOMO is built up of antibonding combimation of O^1 , C^6 , and hydrogen atoms attached to this carbon. HOMO lacks the bonding combination of *p*-orbitals from atoms C^2 and O^3 , the C^2 - O^3 bond gets longer, its partially double character observed in ion **I** is removed. The LUMO is formed of antibonding combination of *p*-orbitals from atoms C^2 and C^4 .

The calculation results show, firstly, that 1,3-migration of hydrogen is a concerted process where the bond C^2 – H^{10} (l 1.444 Å) starts to form before the rupture of C^4 – H^{10} bond (l 1.375 Å); secondly, that charge distribution on the atoms and the structure of the frontier molecular orbitals are independent of conformation.

The interaction of atom H^{10} with C^2 and C^4 carbons on a valence level, disappearance of the C=O double bond due to leveling of bond lengths C^2 – O^3 and O^3 – C^4 and charges on atoms C^2 and C^4 , symmetrical structure of the frontier MO in the transition state, and also a presence of one negative eigenvalue in the matrix of force constants [3] confirm that we deal with a true transition state.

The performed calculations of 1,3 hydrogen migration show the existence of an energy barrier of 54 kcal mol⁻¹ (AM1). The barrier value is consistent with the results of previously performed calculations for 1,1-dimethoxymethane [4] and 1,1-diethoxymethane [5]. The refined calculation in 6-31G** basis with complete geometry optimization for carbocations **I**, **II**, and **A** afforded the barrier value of 53 kcal mol⁻¹. The data obtained permit a conclusion that the intramolecular 1,3-hydrogen shift is a probable reaction stage.

REFERENCES

1. Rondestved, C. S. Jr. and Mantell, G. J., *J. Am. Chem. Soc.*, 1960, vol. 82, p. 6419.

Structure of frontier molecular orbitals in ion I and 1,3-transition state A.

- 2. Akhmadinov, R.T., Cand. Sci. (Chem.) Dissertation, Ufa, 1981.
- 3. Burshtein, K. Ya. and Shorygin, P.P., *Kvantovo-khimicheskie* raschety v organicheskoi khimii i molekulyarnoi spektroskopii (Quantum-Chemical Calculation in Organic Chemistry and Molecular Spectroscopy), Moscow: Nauka, 1989, p. 35.
- 4. Klyuchareva, E.V., Shornikov, D.V., and Kantor, E.A., *Bashkirskii Khimicheskii Zhurnal*, 1999, vol. 6, no. 2–3, p. 46.
- 5. Klyuchareva, E.V., Shornikov, D.V., and Kantor, E.A., *Bashkirskii Khimicheskii Zhurnal*, 1999, vol. 6, no. 2–3, p. 52.